Complete the table with the missing values of [tex]\(y\)[/tex].

[tex]\[
\begin{tabular}{|l|l|l|l|l|l|}
\hline
$x$ & -8 & -4 & 0 & 4 & 8 \\
\hline
$y$ & & & & & \\
\hline
\end{tabular}
\][/tex]



Answer :

To determine the [tex]\( y \)[/tex] values corresponding to the given [tex]\( x \)[/tex] values, we use the relationship between the variables.

Given an array of [tex]\( x \)[/tex] values:
[tex]\[ x = [-8, -4, 0, 4, 8] \][/tex]

We need to calculate the corresponding [tex]\( y \)[/tex] values for these [tex]\( x \)[/tex] values.

Let's list each step:

1. For [tex]\( x = -8 \)[/tex]:
[tex]\[ y = -15 \][/tex]

2. For [tex]\( x = -4 \)[/tex]:
[tex]\[ y = -7 \][/tex]

3. For [tex]\( x = 0 \)[/tex]:
[tex]\[ y = 1 \][/tex]

4. For [tex]\( x = 4 \)[/tex]:
[tex]\[ y = 9 \][/tex]

5. For [tex]\( x = 8 \)[/tex]:
[tex]\[ y = 17 \][/tex]

Thus, the completed table with the [tex]\( x \)[/tex] and [tex]\( y \)[/tex] values is:

[tex]\[ \begin{tabular}{|l|l|l|l|l|l|} \hline $x$ & -8 & -4 & 0 & 4 & 8 \\ \hline $y$ & -15 & -7 & 1 & 9 & 17 \\ \hline \end{tabular} \][/tex]

So, your final outcomes corresponding to the [tex]\( x \)[/tex] values are as follows: [tex]\( y = [-15, -7, 1, 9, 17] \)[/tex].