A manufacturer uses a machine to fill bags with 12 ounces of chocolate. Once filled, the bags are weighed. The bags are not approved for use if they weigh 0.4 ounces more or less than the needed weight. Write an equation to represent the highest and lowest weights that will be approved for use.

A. [tex]\(|w+12|=-0.4\)[/tex]
B. [tex]\(|w-12|=0.4\)[/tex]
C. [tex]\(|w+0.4|=-12\)[/tex]
D. [tex]\(|w-0.4|=12\)[/tex]

---

A butcher keeps the temperature of the meat freezer at [tex]\(-6^{\circ} C\)[/tex]. The temperature can vary within [tex]\(1.5^{\circ}\)[/tex] of the ideal temperature. What are the minimum and maximum temperature values?

A. Minimum: [tex]\(-4.5^{\circ} C\)[/tex] and maximum: [tex]\(-7.5^{\circ} C\)[/tex]
B. Minimum: [tex]\(7.5^{\circ} C\)[/tex] and maximum: [tex]\(-4.5^{\circ} C\)[/tex]
C. Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and maximum: [tex]\(4.5^{\circ} C\)[/tex]
D. Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and maximum: [tex]\(-4.5^{\circ} C\)[/tex]



Answer :

Let's analyze the given scenario step-by-step:

1. Understand the baseline temperature and its allowable variation:
- The ideal temperature for the meat freezer is set at [tex]\(-6^{\circ} C\)[/tex].
- This temperature is allowed to vary by [tex]\( \pm 1.5^{\circ} C \)[/tex].

2. Calculating the range of acceptable temperatures:
- To find the minimum temperature, subtract the variation from the ideal temperature:
[tex]\[ \text{Minimum temperature} = -6^{\circ} C - 1.5^{\circ} C = -7.5^{\circ} C \][/tex]
- To find the maximum temperature, add the variation to the ideal temperature:
[tex]\[ \text{Maximum temperature} = -6^{\circ} C + 1.5^{\circ} C = -4.5^{\circ} C \][/tex]

3. Identifying you the correct choice:
- From the calculations, the permissible temperature range is:
[tex]\[ \text{Minimum: } -7.5^{\circ} C \quad \text{and} \quad \text{Maximum: } -4.5^{\circ} C \][/tex]

Among the provided options, the correct one that matches our calculated results is:

Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and maximum: [tex]\(-4.5^{\circ} C\)[/tex]

Thus, the correct answer is:

Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and Maximum: [tex]\(-4.5^{\circ} C\)[/tex]