Answer :
Let's analyze the given scenario step-by-step:
1. Understand the baseline temperature and its allowable variation:
- The ideal temperature for the meat freezer is set at [tex]\(-6^{\circ} C\)[/tex].
- This temperature is allowed to vary by [tex]\( \pm 1.5^{\circ} C \)[/tex].
2. Calculating the range of acceptable temperatures:
- To find the minimum temperature, subtract the variation from the ideal temperature:
[tex]\[ \text{Minimum temperature} = -6^{\circ} C - 1.5^{\circ} C = -7.5^{\circ} C \][/tex]
- To find the maximum temperature, add the variation to the ideal temperature:
[tex]\[ \text{Maximum temperature} = -6^{\circ} C + 1.5^{\circ} C = -4.5^{\circ} C \][/tex]
3. Identifying you the correct choice:
- From the calculations, the permissible temperature range is:
[tex]\[ \text{Minimum: } -7.5^{\circ} C \quad \text{and} \quad \text{Maximum: } -4.5^{\circ} C \][/tex]
Among the provided options, the correct one that matches our calculated results is:
Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and maximum: [tex]\(-4.5^{\circ} C\)[/tex]
Thus, the correct answer is:
Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and Maximum: [tex]\(-4.5^{\circ} C\)[/tex]
1. Understand the baseline temperature and its allowable variation:
- The ideal temperature for the meat freezer is set at [tex]\(-6^{\circ} C\)[/tex].
- This temperature is allowed to vary by [tex]\( \pm 1.5^{\circ} C \)[/tex].
2. Calculating the range of acceptable temperatures:
- To find the minimum temperature, subtract the variation from the ideal temperature:
[tex]\[ \text{Minimum temperature} = -6^{\circ} C - 1.5^{\circ} C = -7.5^{\circ} C \][/tex]
- To find the maximum temperature, add the variation to the ideal temperature:
[tex]\[ \text{Maximum temperature} = -6^{\circ} C + 1.5^{\circ} C = -4.5^{\circ} C \][/tex]
3. Identifying you the correct choice:
- From the calculations, the permissible temperature range is:
[tex]\[ \text{Minimum: } -7.5^{\circ} C \quad \text{and} \quad \text{Maximum: } -4.5^{\circ} C \][/tex]
Among the provided options, the correct one that matches our calculated results is:
Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and maximum: [tex]\(-4.5^{\circ} C\)[/tex]
Thus, the correct answer is:
Minimum: [tex]\(-7.5^{\circ} C\)[/tex] and Maximum: [tex]\(-4.5^{\circ} C\)[/tex]