Given points [tex]\( A (3, -4) \)[/tex], [tex]\( B (-10, -4) \)[/tex], [tex]\( C (-2, 5) \)[/tex], and [tex]\( D (3, -7) \)[/tex], determine if [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent segments.

Please show your work and explain your reasoning.



Answer :

To determine if segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent, we need to calculate the lengths of both segments and compare them.

### Step 1: Calculate the Length of Segment [tex]\(\overline{AB}\)[/tex]

The coordinates of points [tex]\(A\)[/tex] and [tex]\(B\)[/tex] are:
- [tex]\(A(3, -4)\)[/tex]
- [tex]\(B(-10, -4)\)[/tex]

The formula for the distance between two points [tex]\((x_1, y_1)\)[/tex] and [tex]\((x_2, y_2)\)[/tex] is:
[tex]\[ \text{Distance} = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} \][/tex]

Using this formula for segment [tex]\(\overline{AB}\)[/tex]:
[tex]\[ \text{Length of } \overline{AB} = \sqrt{(-10 - 3)^2 + (-4 - (-4))^2} \][/tex]

Simplify inside the parentheses:
[tex]\[ = \sqrt{(-13)^2 + 0^2} \][/tex]

Calculate the squares:
[tex]\[ = \sqrt{169 + 0} \][/tex]

Finally, take the square root:
[tex]\[ = \sqrt{169} = 13 \][/tex]

So, the length of segment [tex]\(\overline{AB}\)[/tex] is 13.

### Step 2: Calculate the Length of Segment [tex]\(\overline{CD}\)[/tex]

The coordinates of points [tex]\(C\)[/tex] and [tex]\(D\)[/tex] are:
- [tex]\(C(-2, 5)\)[/tex]
- [tex]\(D(3, -7)\)[/tex]

Using the same distance formula for segment [tex]\(\overline{CD}\)[/tex]:
[tex]\[ \text{Length of } \overline{CD} = \sqrt{(3 - (-2))^2 + (-7 - 5)^2} \][/tex]

Simplify inside the parentheses:
[tex]\[ = \sqrt{(3 + 2)^2 + (-7 - 5)^2} \][/tex]
[tex]\[ = \sqrt{5^2 + (-12)^2} \][/tex]

Calculate the squares:
[tex]\[ = \sqrt{25 + 144} \][/tex]

Finally, take the square root:
[tex]\[ = \sqrt{169} = 13 \][/tex]

So, the length of segment [tex]\(\overline{CD}\)[/tex] is also 13.

### Step 3: Compare the Lengths

We found that:
- Length of [tex]\(\overline{AB}\)[/tex] = 13
- Length of [tex]\(\overline{CD}\)[/tex] = 13

Since both lengths are equal, the segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent.

### Conclusion:

The segments [tex]\(\overline{AB}\)[/tex] and [tex]\(\overline{CD}\)[/tex] are congruent since their lengths are equal.