Answer :
To solve the given problem, we need to perform matrix subtraction. Matrix subtraction is done element-wise, that is, each element in the resulting matrix is obtained by subtracting the corresponding elements of the two matrices.
Let's denote the matrices involved in the subtraction as follows:
Matrix [tex]\(A\)[/tex]:
[tex]\[ \left[\begin{array}{cc} -20 & 16 \\ 4 & 0 \\ 8 & -8 \end{array}\right] \][/tex]
Matrix [tex]\(B\)[/tex]:
[tex]\[ \left[\begin{array}{cc} -5 & 1 \\ -6 & 7 \\ 0 & 11 \end{array}\right] \][/tex]
Matrix [tex]\(C\)[/tex] (result):
[tex]\[ \left[\begin{array}{cc} x & y \\ 10 & -7 \\ 9 & -17 \end{array}\right] \][/tex]
The element-wise subtraction is given by:
[tex]\[ A - B = C \][/tex]
We can find each element of matrix [tex]\(C\)[/tex] by subtracting the corresponding elements of matrix [tex]\(B\)[/tex] from matrix [tex]\(A\)[/tex].
Let's start with the element in the first row and first column:
[tex]\[ x = -20 - (-5) \][/tex]
Simplify:
[tex]\[ x = -20 + 5 = -15 \][/tex]
Next, let's find the element in the first row and second column:
[tex]\[ y = 16 - 1 \][/tex]
Simplify:
[tex]\[ y = 16 - 1 = 15 \][/tex]
Now we have determined that [tex]\(x = -15\)[/tex] and [tex]\(y = 15\)[/tex].
Thus, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -15, y = 15} \][/tex]
Let's denote the matrices involved in the subtraction as follows:
Matrix [tex]\(A\)[/tex]:
[tex]\[ \left[\begin{array}{cc} -20 & 16 \\ 4 & 0 \\ 8 & -8 \end{array}\right] \][/tex]
Matrix [tex]\(B\)[/tex]:
[tex]\[ \left[\begin{array}{cc} -5 & 1 \\ -6 & 7 \\ 0 & 11 \end{array}\right] \][/tex]
Matrix [tex]\(C\)[/tex] (result):
[tex]\[ \left[\begin{array}{cc} x & y \\ 10 & -7 \\ 9 & -17 \end{array}\right] \][/tex]
The element-wise subtraction is given by:
[tex]\[ A - B = C \][/tex]
We can find each element of matrix [tex]\(C\)[/tex] by subtracting the corresponding elements of matrix [tex]\(B\)[/tex] from matrix [tex]\(A\)[/tex].
Let's start with the element in the first row and first column:
[tex]\[ x = -20 - (-5) \][/tex]
Simplify:
[tex]\[ x = -20 + 5 = -15 \][/tex]
Next, let's find the element in the first row and second column:
[tex]\[ y = 16 - 1 \][/tex]
Simplify:
[tex]\[ y = 16 - 1 = 15 \][/tex]
Now we have determined that [tex]\(x = -15\)[/tex] and [tex]\(y = 15\)[/tex].
Thus, the values of [tex]\(x\)[/tex] and [tex]\(y\)[/tex] are:
[tex]\[ \boxed{x = -15, y = 15} \][/tex]