Find all solutions of the equation in the interval [tex]\([0, 2\pi)\)[/tex].

[tex]\[ 2 \cos \theta + \sqrt{2} = 0 \][/tex]

Write your answer in radians in terms of [tex]\(\pi\)[/tex].

If there is more than one solution, separate them with commas.

[tex]\[ \theta = \ \square \][/tex]



Answer :

To solve the equation [tex]\(2 \cos \theta + \sqrt{2} = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex], follow these steps:

1. Isolate the cosine function:
[tex]\[ 2 \cos \theta + \sqrt{2} = 0 \][/tex]
Subtract [tex]\(\sqrt{2}\)[/tex] from both sides:
[tex]\[ 2 \cos \theta = -\sqrt{2} \][/tex]
Divide both sides by [tex]\(2\)[/tex]:
[tex]\[ \cos \theta = -\frac{\sqrt{2}}{2} \][/tex]

2. Identify the reference angle:
We need to find [tex]\(\theta\)[/tex] such that [tex]\(\cos \theta = -\frac{\sqrt{2}}{2}\)[/tex]. The value [tex]\(-\frac{\sqrt{2}}{2}\)[/tex] corresponds to the standard angles where the cosine value is [tex]\(\frac{\sqrt{2}}{2}\)[/tex], but in the second and third quadrants (where cosine is negative).

3. Determine the specific angles:
The angles that satisfy [tex]\(\cos \theta = -\frac{\sqrt{2}}{2}\)[/tex] are:
[tex]\[ \theta = \pi - \frac{\pi}{4} \quad \text{(Second quadrant)} \][/tex]
and
[tex]\[ \theta = \pi + \frac{\pi}{4} \quad \text{(Third quadrant)} \][/tex]

Simplifying these:
[tex]\[ \theta = \frac{3\pi}{4} \][/tex]
and
[tex]\[ \theta = \frac{5\pi}{4} \][/tex]

4. Write the solution in radians in terms of [tex]\(\pi\)[/tex]:
The solutions in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \frac{3\pi}{4}, \frac{5\pi}{4} \][/tex]

Thus, the solutions to the equation [tex]\(2 \cos \theta + \sqrt{2} = 0\)[/tex] in the interval [tex]\([0, 2\pi)\)[/tex] are:
[tex]\[ \theta = \frac{3\pi}{4}, \frac{5\pi}{4} \][/tex]