What is the length (magnitude) of the vector [tex]$(6, -3)$[/tex]?

A. [tex]\sqrt{53}[/tex]
B. [tex]\sqrt{2}[/tex]
C. [tex]3 \sqrt{5}[/tex]
D. 3



Answer :

To determine the length (magnitude) of the vector [tex]\((6, -3)\)[/tex], follow these steps:

1. Identify the components of the vector: The vector is given as [tex]\((6, -3)\)[/tex], where [tex]\(6\)[/tex] is the [tex]\(x\)[/tex]-component and [tex]\(-3\)[/tex] is the [tex]\(y\)[/tex]-component.

2. Use the formula for the magnitude of a vector: The magnitude [tex]\( \| \mathbf{v} \| \)[/tex] of a vector [tex]\(\mathbf{v} = (x, y)\)[/tex] is given by the formula:
[tex]\[ \| \mathbf{v} \| = \sqrt{x^2 + y^2} \][/tex]

3. Substitute the components into the formula:
[tex]\[ \| (6, -3) \| = \sqrt{6^2 + (-3)^2} \][/tex]

4. Calculate the squares of the components:
[tex]\[ 6^2 = 36 \][/tex]
[tex]\[ (-3)^2 = 9 \][/tex]

5. Add the squared values:
[tex]\[ 36 + 9 = 45 \][/tex]

6. Take the square root of the sum:
[tex]\[ \sqrt{45} = 3\sqrt{5} \][/tex]

Therefore, the magnitude of the vector [tex]\((6, -3)\)[/tex] is [tex]\(3\sqrt{5}\)[/tex].

So, the correct answer is:
C. [tex]\(3\sqrt{5}\)[/tex]