Format the following question or task so that it is easier to read.
Fix any grammar or spelling errors.
Remove phrases that are not part of the question.
Do not remove or change LaTeX formatting.
Do not change or remove [tex] [/tex] tags.
If the question is nonsense, rewrite it so that it makes sense.
-----
[tex] a^2 + 42a + 432 [/tex]
-----

Response:
Rewrite the expression:
[tex]\[ a^2 + 42a + 432 \][/tex]



Answer :

Sure, let's solve the quadratic equation [tex]\( a^2 + 42a + 432 = 0 \)[/tex] step by step.

### Step 1: Write Down the Standard Form
A quadratic equation is generally written in the form:
[tex]\[ ax^2 + bx + c = 0 \][/tex]
For our equation, [tex]\( a = 1 \)[/tex], [tex]\( b = 42 \)[/tex], and [tex]\( c = 432 \)[/tex].

### Step 2: Calculate the Discriminant
The discriminant Δ of a quadratic equation [tex]\( ax^2 + bx + c = 0 \)[/tex] is given by:
[tex]\[ \Delta = b^2 - 4ac \][/tex]
Plugging in the coefficients [tex]\( a = 1 \)[/tex], [tex]\( b = 42 \)[/tex], and [tex]\( c = 432 \)[/tex]:
[tex]\[ \Delta = 42^2 - 4 \cdot 1 \cdot 432 \][/tex]
[tex]\[ \Delta = 1764 - 1728 \][/tex]
[tex]\[ \Delta = 36 \][/tex]

### Step 3: Determine the Nature of the Roots
The discriminant tells us the nature of the roots:
- If [tex]\( \Delta > 0 \)[/tex], there are two distinct real roots.
- If [tex]\( \Delta = 0 \)[/tex], there is exactly one real root.
- If [tex]\( \Delta < 0 \)[/tex], there are no real roots (the roots are complex).

In this case, [tex]\( \Delta = 36 \)[/tex] which is greater than 0. Hence, we have two distinct real roots.

### Step 4: Calculate the Roots Using the Quadratic Formula
The quadratic formula for finding the roots of [tex]\( ax^2 + bx + c = 0 \)[/tex] is:
[tex]\[ x = \frac{-b \pm \sqrt{\Delta}}{2a} \][/tex]
Using [tex]\( a = 1 \)[/tex], [tex]\( b = 42 \)[/tex], and [tex]\( \Delta = 36 \)[/tex]:
[tex]\[ x_1 = \frac{-42 + \sqrt{36}}{2 \cdot 1} \][/tex]
[tex]\[ x_2 = \frac{-42 - \sqrt{36}}{2 \cdot 1} \][/tex]

### Step 5: Simplify the Root Expressions
First, calculate the square root of the discriminant:
[tex]\[ \sqrt{\Delta} = \sqrt{36} = 6 \][/tex]

Now, substitute back into the equations for [tex]\( x_1 \)[/tex] and [tex]\( x_2 \)[/tex]:
[tex]\[ x_1 = \frac{-42 + 6}{2} = \frac{-36}{2} = -18 \][/tex]
[tex]\[ x_2 = \frac{-42 - 6}{2} = \frac{-48}{2} = -24 \][/tex]

### Solution
The two roots of the quadratic equation [tex]\( a^2 + 42a + 432 = 0 \)[/tex] are:
[tex]\[ a_1 = -18 \][/tex]
[tex]\[ a_2 = -24 \][/tex]

Therefore, the roots of the quadratic equation are [tex]\(-18\)[/tex] and [tex]\(-24\)[/tex].