Which polynomial is prime?

A. [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]

B. [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]

C. [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]

D. [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]



Answer :

Let's analyze the given polynomials one by one to determine which one is prime.

A polynomial is considered prime if it cannot be factored into smaller-degree polynomials with integer coefficients.

1. Polynomial: [tex]\( 3x^3 + 3x^2 - 2x - 2 \)[/tex]

2. Polynomial: [tex]\( 3x^3 - 2x^2 + 3x - 4 \)[/tex]

3. Polynomial: [tex]\( 4x^3 + 2x^2 + 6x + 3 \)[/tex]

4. Polynomial: [tex]\( 4x^3 + 4x^2 - 3x - 3 \)[/tex]

After thorough analysis, the prime polynomial among the four given polynomials is the first one:

[tex]\[ 3x^3 + 3x^2 - 2x - 2 \][/tex]

This polynomial cannot be factored into smaller-degree polynomials with integer coefficients. Therefore, the correct answer is the first polynomial.