Given [tex]\( h(x) \)[/tex], evaluate [tex]\( h(-1) \)[/tex].

[tex]\[
\begin{array}{c}
h(x) = 3x^2 - 4x + 1 \\
h(-1) = [?]
\end{array}
\][/tex]



Answer :

To evaluate [tex]\( h(-1) \)[/tex] for the given function [tex]\( h(x) = 3x^2 - 4x + 1 \)[/tex], follow these steps:

1. Substitute [tex]\( x = -1 \)[/tex] into the function [tex]\( h(x) \)[/tex].
[tex]\[ h(-1) = 3(-1)^2 - 4(-1) + 1 \][/tex]

2. Calculate [tex]\( (-1)^2 \)[/tex].
[tex]\[ (-1)^2 = 1 \][/tex]
So the expression becomes:
[tex]\[ h(-1) = 3 \cdot 1 - 4(-1) + 1 \][/tex]

3. Multiply the terms by their coefficients.
[tex]\[ 3 \cdot 1 = 3 \][/tex]
[tex]\[ -4 \cdot (-1) = 4 \][/tex]
So the expression now is:
[tex]\[ h(-1) = 3 + 4 + 1 \][/tex]

4. Add the terms together.
[tex]\[ 3 + 4 + 1 = 8 \][/tex]

Thus, [tex]\( h(-1) = 8 \)[/tex].

Other Questions