Solve for [tex]\( p \)[/tex]:
[tex]\[ \frac{ p }{-2} + 25 \geq -5 \][/tex]

A) [tex]\( p \geq 60 \)[/tex]
B) [tex]\( p \geq -60 \)[/tex]
C) [tex]\( p \leq 60 \)[/tex]
D) [tex]\( p \leq -60 \)[/tex]



Answer :

To solve the inequality [tex]\(\frac{p}{-2} + 25 \geq -5\)[/tex], follow these steps:

1. Isolate the term with [tex]\(p\)[/tex] on one side of the inequality:
[tex]\[ \frac{p}{-2} \geq -5 - 25 \][/tex]
This involves subtracting 25 from both sides:
[tex]\[ \frac{p}{-2} \geq -30 \][/tex]

2. Clear the fraction by multiplying both sides by -2:
When you multiply or divide by a negative number in an inequality, the direction of the inequality sign reverses:
[tex]\[ p \leq -30 \times -2 \][/tex]

3. Simplify the right-hand side:
[tex]\[ p \leq 60 \][/tex]

Thus, the final answer is:
[tex]\[ p \leq 60 \][/tex]

So, the correct option is (C) [tex]\(p \leq 60\)[/tex].