Choose the correct simplification of [tex]\frac{a^4 b^4}{a^4 b^4}[/tex].

A. [tex]a^9 b^{10}[/tex]

B. [tex]a b^2[/tex]

C. [tex]\frac{1}{a b^2}[/tex]

D. [tex]\frac{1}{a^9 b^{10}}[/tex]



Answer :

To simplify the expression [tex]\(\frac{a^4 b^4}{a^4 b^4}\)[/tex], follow these steps:

1. Understand the Expression: The denominator and the numerator are identical, i.e., both are [tex]\(a^4 b^4\)[/tex].

2. Apply Basic Division Property: Any non-zero number divided by itself is equal to 1. This property holds true for expressions involving variables and exponents as well.

3. Simplify: Divide the numerator by the denominator:
[tex]\[ \frac{a^4 b^4}{a^4 b^4} = 1 \][/tex]

Therefore, the correct simplification of the expression [tex]\(\frac{a^4 b^4}{a^4 b^4}\)[/tex] is 1.

None of the other options given (like [tex]\(a^9 b^{10}\)[/tex], [tex]\(a b^2\)[/tex], [tex]\(\frac{1}{a b^2}\)[/tex], and [tex]\(\frac{1}{a^9 b^{10}}\)[/tex]) match this simplified result.

Hence, the correct simplification is:
[tex]\[ 1 \][/tex]