Simplify the following trigonometric expression:
[tex]\[ \cos \left(45^{\circ}+\theta\right) \cdot \cos \left(45^{\circ}-\theta\right)=\frac{1}{2} \cos 2 \theta \][/tex]



Answer :

To verify the trigonometric identity:

[tex]\[ \cos \left(45^{\circ}+\theta\right) \cdot \cos \left(45^{\circ}-\theta\right)=\frac{1}{2} \cos 2 \theta \][/tex]

we can follow these steps:

### Step 1: Express the angles in radians
We know that [tex]\( 45^{\circ} = \frac{\pi}{4} \)[/tex]. So the equation can be rewritten in radians as:

[tex]\[ \cos \left(\frac{\pi}{4}+\theta\right) \cdot \cos \left(\frac{\pi}{4}-\theta\right)=\frac{1}{2} \cos 2 \theta \][/tex]

### Step 2: Expand the left-hand side using trigonometric identities

We use the product-to-sum identities to expand [tex]\( \cos(A) \cos(B) \)[/tex]:

[tex]\[ \cos(A) \cos(B) = \frac{1}{2} [\cos(A+B) + \cos(A-B)] \][/tex]

For our equation, let [tex]\( A = \frac{\pi}{4} + \theta \)[/tex] and [tex]\( B = \frac{\pi}{4} - \theta \)[/tex]. Then:

[tex]\[ \cos \left(\frac{\pi}{4}+\theta\right) \cdot \cos \left(\frac{\pi}{4}-\theta\right) = \frac{1}{2} \left[ \cos \left( \left( \frac{\pi}{4} + \theta \right) + \left( \frac{\pi}{4} - \theta \right) \right) + \cos \left( \left( \frac{\pi}{4} + \theta \right) - \left( \frac{\pi}{4} - \theta \right) \right) \right] \][/tex]

Simplifying the angles inside the cosines:

[tex]\[ \left( \frac{\pi}{4} + \theta \right) + \left( \frac{\pi}{4} - \theta \right) = \frac{\pi}{4} + \theta + \frac{\pi}{4} - \theta = \frac{\pi}{2} \][/tex]

[tex]\[ \left( \frac{\pi}{4} + \theta \right) - \left( \frac{\pi}{4} - \theta \right) = \frac{\pi}{4} + \theta - \frac{\pi}{4} + \theta = 2\theta \][/tex]

So, the expression becomes:

[tex]\[ \cos \left(\frac{\pi}{4}+\theta\right) \cdot \cos \left(\frac{\pi}{4}-\theta\right) = \frac{1}{2} \left[ \cos \left( \frac{\pi}{2} \right) + \cos(2\theta) \right] \][/tex]

We know that [tex]\( \cos \left( \frac{\pi}{2} \right) = 0 \)[/tex], so the equation simplifies to:

[tex]\[ \cos \left(\frac{\pi}{4}+\theta\right) \cdot \cos \left(\frac{\pi}{4}-\theta\right) = \frac{1}{2} \cos(2\theta) \][/tex]

### Step 3: Compare the left-hand side and the right-hand side

We see that both sides of the equation are equal:

[tex]\[ \cos \left(\frac{\pi}{4}+\theta\right) \cdot \cos \left(\frac{\pi}{4}-\theta\right) = \frac{1}{2} \cos(2\theta) \][/tex]

Therefore, the trigonometric identity is verified. The original equation holds true.