Answer :
To simplify the given expression [tex]\(\frac{3-4|2(-3)|}{|-3|}\)[/tex], we will proceed step-by-step through the calculation:
1. Calculate the absolute value of [tex]\(-3\)[/tex]:
[tex]\[ |-3| = 3 \][/tex]
2. Evaluate the inner absolute value:
[tex]\[ 2(-3) = -6 \][/tex]
Then, take the absolute value of [tex]\(-6\)[/tex]:
[tex]\[ |-6| = 6 \][/tex]
3. Multiply 4 by the result of the inner absolute value:
[tex]\[ 4 \cdot 6 = 24 \][/tex]
4. Compute the numerator by subtracting the above result from 3:
[tex]\[ 3 - 24 = -21 \][/tex]
5. Using the result from step 1 as the denominator, we now have:
[tex]\[ \frac{-21}{3} \][/tex]
6. Divide the numerator by the denominator:
[tex]\[ -21 \div 3 = -7 \][/tex]
Thus, the simplified expression is [tex]\(-7\)[/tex].
1. Calculate the absolute value of [tex]\(-3\)[/tex]:
[tex]\[ |-3| = 3 \][/tex]
2. Evaluate the inner absolute value:
[tex]\[ 2(-3) = -6 \][/tex]
Then, take the absolute value of [tex]\(-6\)[/tex]:
[tex]\[ |-6| = 6 \][/tex]
3. Multiply 4 by the result of the inner absolute value:
[tex]\[ 4 \cdot 6 = 24 \][/tex]
4. Compute the numerator by subtracting the above result from 3:
[tex]\[ 3 - 24 = -21 \][/tex]
5. Using the result from step 1 as the denominator, we now have:
[tex]\[ \frac{-21}{3} \][/tex]
6. Divide the numerator by the denominator:
[tex]\[ -21 \div 3 = -7 \][/tex]
Thus, the simplified expression is [tex]\(-7\)[/tex].