What is the solution to the equation [tex]$9(w-4)-7w=5(3w-2)$[/tex]?

A. [tex]w=-\frac{34}{13}[/tex]
B. [tex]w=-2[/tex]
C. [tex]w=\frac{6}{13}[/tex]
D. [tex]w=26[/tex]



Answer :

Certainly! Let's solve the equation step-by-step.

First, distribute the 9 on the left side of the equation:
[tex]\[ 9(w - 4) = 9w - 36 \][/tex]

Next, distribute the 5 on the right side of the equation:
[tex]\[ 5(3w - 2) = 15w - 10 \][/tex]

Now substitute the distributed expressions back into the equation:
[tex]\[ 9w - 36 - 7w = 15w - 10 \][/tex]

Combine like terms on the left side of the equation:
[tex]\[ (9w - 7w) - 36 = 15w - 10 \][/tex]
[tex]\[ 2w - 36 = 15w - 10 \][/tex]

To isolate the variable [tex]\( w \)[/tex], move all terms containing [tex]\( w \)[/tex] to one side of the equation and the constant terms to the other:
[tex]\[ 2w - 15w = -10 + 36 \][/tex]
[tex]\[ -13w = 26 \][/tex]

Now, divide both sides by [tex]\(-13\)[/tex] to solve for [tex]\( w \)[/tex]:
[tex]\[ w = \frac{26}{-13} \][/tex]
[tex]\[ w = -2 \][/tex]

Thus, the solution to the equation [tex]\( 9(w-4) - 7w = 5(3w-2) \)[/tex] is [tex]\(\boxed{-2}\)[/tex].