Answer :
To find the area of Fiona's circle, we start with the given diameter and follow the necessary steps to determine the radius and, subsequently, the area.
1. Determine the Radius:
- The diameter of the circle is given as 14 meters.
- The radius [tex]\( r \)[/tex] of a circle is half of the diameter.
- Therefore, the radius is:
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{14}{2} = 7 \, \text{meters} \][/tex]
2. Calculate the Area:
- The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
- Substituting the radius we found:
[tex]\[ A = \pi (7)^2 = \pi \times 49 = 49 \pi \, \text{square meters} \][/tex]
Thus, the area of Fiona's circle is [tex]\( 49 \pi \, \text{square meters} \)[/tex]. Therefore, the correct choice from the given options is:
[tex]\[ 49 \pi \, \text{m}^2 \][/tex]
1. Determine the Radius:
- The diameter of the circle is given as 14 meters.
- The radius [tex]\( r \)[/tex] of a circle is half of the diameter.
- Therefore, the radius is:
[tex]\[ r = \frac{\text{diameter}}{2} = \frac{14}{2} = 7 \, \text{meters} \][/tex]
2. Calculate the Area:
- The formula for the area [tex]\( A \)[/tex] of a circle is:
[tex]\[ A = \pi r^2 \][/tex]
- Substituting the radius we found:
[tex]\[ A = \pi (7)^2 = \pi \times 49 = 49 \pi \, \text{square meters} \][/tex]
Thus, the area of Fiona's circle is [tex]\( 49 \pi \, \text{square meters} \)[/tex]. Therefore, the correct choice from the given options is:
[tex]\[ 49 \pi \, \text{m}^2 \][/tex]