Refer to the accompanying table, which describes the number of adults in groups of five who reported sleepwalking. Find the mean and standard deviation for the numbers of sleepwalkers in groups of five.

\begin{tabular}{c|c}
[tex]$x$[/tex] & [tex]$P(x)$[/tex] \\
\hline 0 & 0.182 \\
1 & 0.358 \\
2 & 0.311 \\
3 & 0.119 \\
4 & 0.029 \\
5 & 0.001
\end{tabular}

The mean is [tex]$\square$[/tex]
The standard deviation is [tex]$\square$[/tex]



Answer :

Let's find the mean and standard deviation for the given distribution of the number of sleepwalkers in groups of five.

### Mean (Expected Value)
The mean [tex]\( \mu \)[/tex] of a probability distribution [tex]\( P(x) \)[/tex] can be calculated using the formula:
[tex]\[ \mu = \sum_{x} [x \cdot P(x)] \][/tex]
Where [tex]\( x \)[/tex] is the possible value of the random variable and [tex]\( P(x) \)[/tex] is the probability of [tex]\( x \)[/tex].

Given the table:
[tex]\[ \begin{array}{c|c} x & P(x) \\ \hline 0 & 0.182 \\ 1 & 0.358 \\ 2 & 0.311 \\ 3 & 0.119 \\ 4 & 0.029 \\ 5 & 0.001 \\ \end{array} \][/tex]

We can compute the mean as follows:
[tex]\[ \mu = (0 \times 0.182) + (1 \times 0.358) + (2 \times 0.311) + (3 \times 0.119) + (4 \times 0.029) + (5 \times 0.001) \][/tex]
[tex]\[ \mu = 0 + 0.358 + 0.622 + 0.357 + 0.116 + 0.005 \][/tex]
[tex]\[ \mu = 1.458 \][/tex]

### Variance
Variance [tex]\( \sigma^2 \)[/tex] is calculated as:
[tex]\[ \sigma^2 = \sum_{x} [(x - \mu)^2 \cdot P(x)] \][/tex]

Using the values of [tex]\( x \)[/tex], [tex]\( P(x) \)[/tex], and [tex]\( \mu = 1.458 \)[/tex]:
[tex]\[ \sigma^2 = (0 - 1.458)^2 \cdot 0.182 + (1 - 1.458)^2 \cdot 0.358 + (2 - 1.458)^2 \cdot 0.311 + (3 - 1.458)^2 \cdot 0.119 + (4 - 1.458)^2 \cdot 0.029 + (5 - 1.458)^2 \cdot 0.001 \][/tex]

### Standard Deviation
The standard deviation [tex]\( \sigma \)[/tex] is the square root of the variance:
[tex]\[ \sigma = \sqrt{\sigma^2} \][/tex]

Given the numerical results:
[tex]\[ \mu = 1.458 \][/tex]
[tex]\[ \sigma \approx 1.018 \][/tex]

So, the mean number of sleepwalkers in groups of five is 1.458, and the standard deviation is approximately 1.018.